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The qualitative spectral properties characterizing the advection-diffusion operator in two-dimensional steady
incompressible flows can be obtained from the analysis of simple model flows on the torus, the velocity field
of which attains the simple expressionvsxd=(0,vysxd). For this class of simple flows, the advection-diffusion
operator reduces to a one-dimensional Schrödinger operator in the presence of an imaginary potential, which
shares some spectral analogies with non-Hermitian quantum operators(e.g., spectral invariance), and is char-
acterized by eigenfunction localization. The latter property(i.e., eigenfunction localization) is strictly related to
the occurrence of a universal scaling of the eigenvalue spectrum with the Peclet number, the scaling exponent
of which depends exclusively on the local behavior of the potential close to its critical points. The analysis is
extended to a class of unbounded non-Hermitian operators, which include the Laplacian and the biharmonic
operators coupled to an imaginary potential as special cases.
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I. INTRODUCTION

Dispersion dynamics of passive scalars is a central issue
in fluid dynamics and in many applied fields: environmental
sciences(pollutant dispersion) [1], chemical engineering
(mixing and chemical reaction in stirred vessels) [2,3], etc.
Under the assumption that the velocity field is incompress-
ible (i.e., = ·v=0), dispersion is mathematically described by
the advection-diffusion equation(ADE) which, in dimen-
sionless form, attains the expression:

]f

]t
= − v ·= f + «=2f, s1.1d

where «=Pe−1 is the reciprocal of the Peclet number Pe
=VcL /D (Vc, L being characteristic velocity and length for
the system, andD being the diffusivity). The Peclet number
represents the ratio of the characteristic time of diffusion to
that of advection.

Equation(1.1) has been analyzed for different classes of
velocity fields: open[4–6] and closed[7–10] flows, and for
families of flows possessing different kinematic features
(nonchaotic, partially chaotic, and globally chaotic flows).

The nature of the flow domain(i.e., whether it is bounded
or not) influences the way dispersion features must be con-
sidered and quantified. In unbounded flows, dispersion cor-
responds to the propagation of an initial disturbance by the
simultaneous action of a given velocity field and diffusion. In
this case, dispersion dynamics can be conveniently recast in
the form of a stochastic Langevin equation. Consequently,
dispersion properties can be described by means of statistical
indicators(such as the mean square displacement) or, equiva-
lently, through the scaling of the effective diffusivity tensor
as a function of the molecular diffusivity. It has been shown

that the long-time, long-distance dynamics of the solutions of
Eq. (1.1) in unbounded domains approaches that associated
with a pure diffusion equation with constant tensor diffusiv-
ity [11] (see also[12]). This result stems from the application
of perturbation and asymptotic analysis[13] to Eq. (1.1).

In the study of dispersion in closed(bounded) flows, the
analogy between Eq.(1.1) and stochastic differential equa-
tions is less useful, since all the statistical indicators, such as
the mean square displacement, saturate asymptotically to-
ward a constant value which is related to the finite size of the
domain. Consequently, the quantitative description of disper-
sion in closed flows should be focused on how advection will
eventually modify and enhance the rate at which equilibrium
is approached with respect to the case where diffusion is the
only transport mechanism operating.

It follows from the above observation that the mathemati-
cal description of dispersion in unbounded and closed flows
is intrinsically different. It is grounded on asymptotic analy-
sis and stochastic methods for open flows, while it is cen-
tered on the spectral(eigenvalue/eigenfunction) characteriza-
tion in bounded domain(since the eigenvalues of the
advection/diffusion operator correspond to the intrinsic rates
of homogenization, and its eigenfunctions to the spatial pat-
terns that will eventually appear).

Several authors have analyzed the qualitative features of
homogenization in bounded domain in the presence of com-
plex flow protocols yielding Lagrangian chaos[7–10]. Dif-
ferent scaling exponents of the eigenvalues with the Pe num-
ber have been observed and qualitatively associated with the
kinematic features of the stirring protocol.

The present paper deals with a relatively simpler class of
flows (two-dimensional autonomous), in the presence of de-
terministic velocity fields, for which the theoretical aspects
of homogenization need to be clarified. Specifically, we ana-
lyze first a subclass of these flows, namely, the model flows
on the two-dimensional torus for whichv=(0,vysxd) (which
can be referred to as parallel flows), and subsequently we
show that the spectral results obtained for these model flows
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can be used to predict the scaling behavior of generic two-
dimensional autonomous flows. The latter claim is supported
by an extensive analysis of typical two-dimensional flow
structures.

Stemming from the spectral structure of the ADE in this
class of flows(parallel flows), a connection between between
homogenization dynamics and non-Hermitian quantum me-
chanics is also discussed. We show that there exists a close
analogy between Eq.(1.1) and the Schrödinger equation in
the presence of an imaginary potential, and that, likewise the
quantum analogous, homogenization is characterized by
spectral invariance. Moreover, universal spectral scaling and
eigenfunction localization are the other salient features char-
acterizing the non-Hermitian operators associated with ho-
mogenization dynamics.

The paper is organized as follows. Section II introduces
the concept of imaginary potential for parallel flows and de-
scribes the analogy with non-Hermitian quantum mechanics.
Section III addresses the occurrence of universality and
eigenfunction localization. Specifically, starting from the em-
pirical observation of the eigenfunction localization, we
prove that a universal scaling occurs in the behavior of the
dominant eigenvalue as a function of the Peclet number,
which is controlled exclusively by the local properties of the
flow.

Finally, Sec. IV addresses how the spectral results and the
universality properties can be applied to predict the spectral
behavior of physically realizable flows(the cases of the cav-
ity flow, the Couette flow, and of other model flows on the
torus are addressed).

II. IMAGINARY POTENTIAL AND NON-HERMITIAN
OPERATORS

Let us consider the advection-diffusion equation(1.1)
driven by autonomous velocity fieldsvsxd in a closed two-
dimensional domainM of the Euclidean plane. Since the
normal component of the velocity field vanishes at the
boundary]M, Eq. (1.1) satisfies the boundary condition of
Neumann type, namely the normal derivative off vanishes
at ]M. Alternatively, a convenient prototype of flow domain
of a spatially confined flow is the two-dimensional torus, i.e.,
M=I2 whereI2 is the unit squareI2=hsx,yd u0øx,yø1j,
with opposite edges identified. Correspondingly, Eq.(1.1),
defined inI2, is equipped with periodic boundary conditions.

Theoretical results from the theory of linear operator
[14,15] ensure that the advection-diffusion operator

L = − vsxd ·= + «=2 s2.1d

possesses the following properties:(i) it admits a countable
set of separated eigenvalues,(ii ) the corresponding eigen-
functions form a complete basis in the space of square sum-
mable functions inM, fulfilling either Neumann or period-
icity conditions(see above), (iii ) all of the eigenvalues(with
the exception of the zero eigenvalue corresponding to the
constant eigenfunction) possess negative real part(through-
out this paper we use the symbolln to indicate the real part
of the eigenvalues with reversed sign).

Throughout this section we consider, a simple model for
an incompressible flow, which attains the structure

vsxd = „0,vysxd… s2.2d

with a single nonvanishing component of the velocity field
which, due to incompressibility, depends solely on the other
coordinate. These model flows can be referred to asparallel
flowson the torus.

The autonomous sine-flow(ASF), defined by vysxd
=sins2pxd belongs to this class, and has been widely inves-
tigated in the literature[16,17]. Its eigenvalue spectrum pos-
sesses two branches(see Fig. 1): a diffusive branch, charac-
terized by real eigenvalues, for which theln’s are
proportional to«, i.e., ln,Pe−1, and aconvection-enhanced
branch, for whichln’s are proportional to the square root of
«, i.e., ln,1/ÎPe. The dominant eigenvalue(i.e., the eigen-
value possessing the smallestln) belongs to the diffusive
branch, and the structure of the corresponding eigenfunction
closely resembles that of the streamfunction as«→0.

The aim of the next two sections is to analyze in detail the
spectral properties of parallel flows.

A. Imaginary potentials

Let us consider the class of flows defined by Eq.(2.2) in
I2, the ASF being a particular example of this class. The
advection-diffusion operator for these flows attains the form

Lffgsxd = − vysxd
]f

]y
+ «S ]2f

]x2 +
]2f

]y2 D . s2.3d

By introducing the functioncsx,td defined by

fsx,td = e−i2pmy−«4p2m2tcsx,td s2.4d

wherem is an integer andi =Î−1, the ADE becomes

]c

]t
= i2pmvysxdc + «

]2c

]x2 . s2.5d

Therefore, homogenization dynamics described by Eq.(1.1)
on the unit square reduces to a countable family of second-
order differential problems on the unit interval]0,1[
equipped with periodic boundary conditions, defined by the
evolution operators Amfcg= iVmsxdc+« d2c /dx2, where

FIG. 1. Real part with reversed signln of the dominant eigen-
values of the diffusive and convective branch as a function of Pe for
the ASF. Line(a) and(s) refer to the diffusive branch, line(b) and
(P) to the convection-enhanced branch.
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Vmsxd=2pmvysxd. The casem=0 gives rise to real eigenval-
ues, which are the eigenvalues of the diffusion operator
−«4p2n2, n=0,1, . . ., andconstitute the diffusive branch of
the eigenvalue spectrum of the advection-diffusion operator.
Apart from the diffusive branch, the spectral properties of the
ADE and the analysis of the origin of the scaling behavior
characterizing the convection-enhanced branch, can be ob-
tained from the analysis of the operator:

Afcg = «
d2c

dx2 + iVsxdc, s2.6d

whereVsxd=V1sxd, which can be viewed as a second-order
non-Hermitian Schrödinger operator in the presence of an
imaginary potential. More precisely, lethnm,ns«dj, m= . . . ,
−1,0,1, . . .,n=1,2, . . . be theeigenvalues ofL defined by
Eq. (2.3), hmns«dj the eigenvalues ofA defined by Eq.(2.6),
respectively, andhfm,nsx,ydj, hcmsxdj the corresponding sys-
tems of eigenfunctions. We have

lm,ns«d = mmns«/md − «4p2m2 s2.7d

and

fm,nsx,yd = e−i2pmycnsxd. s2.8d

Due to the close relationship between the advection-
diffusion operator Eq.(2.3) and the operatorA defined by
Eq. (2.6), we will refer to iVsxd as “the imaginary potential
generating the flow,” although we stress out that this poten-
tial has nothing to do with the classical concept of velocity
potential adopted in fluid dynamics[18].

B. Generalized non-Hermitian operators

In order to analyze the spectral structure of the operatorA
associated with the ADE, and to define properly its univer-
sality properties(see Sec. III), let us consider a slight gener-
alization of it, by defining the class of differential operators
of increasing orders 2q, q=1,2, . . .associated with an imagi-
nary potential, as

Aqfcg = s− 1dq−1«Dx
2qc + iVsxdc, q = 1,2, . . . , s2.9d

whereDx
n=dn/dxn. Forq=1, Eq.(2.6) is recovered, while the

caseq=2 corresponds to a relaxation dynamics driven by a
biharmonic operator.

The family of operatorsAq is defined in the functional
spaceLper

2 sg0,1fd of square summable complex-valued peri-
odic functions in the unit interval]0, 1[. This functional
space is a Hilbert space, equipped with the inner product

sf,gd =E
0

1

fsxdḡsxddx, f,g P Lper
2 sg0,1fd. s2.10d

We denote withi ·iL2 the norm inherited by it, namelyifiL2

=sf , fd1/2. We use the notationḡ to indicate the complex con-
jugate ofg.

By choosing the natural basis of periodic functions
hei2pkxjk=−`

` , the action of the operatorAq on a functionc
PLper

2 sg0,1fd, Aqfcg= f is expressed by the relation:

fn = − s2pnd2qcn + io
m

Vn−mcm, s2.11d

where fn, cn, and Vn are the Fourier coefficients offsxd,
csxd, andVsxd, respectively. In the particular case of a sinu-
soidal potential(corresponding to the ASF), Eq. (2.11) be-
come

fn = − s2pnd2qcn + 2pscn−1 − cn+1d. s2.12d

Thus, for the ASF potential, the matrix representation of the
operatorAq attains a tridiagonal form, which, forq=1 re-
sembles that of a non-Hermitian Schrödinger equation in the
presence of a tight binding potential(e.g., deriving from a
imaginary vector potential associated with the action of a
magnetic field on a quantum particle). This problem leads to
a non-Hermitian second-order operator, characterized by an
almost tridiagonal matrix representation[19–21]. However,
there are differences and similarities between these two prob-
lems. The differences are related to the properties of the en-
tries of the upper and lower diagonals. In the non-Hermitian
quantum mechanical problem, the entries of these diagonals
are arbitrary positive values, while in the ASF problem, the
entries are equal within each subdiagonal, and possess oppo-
site sign when considering elements belonging to different
subdiagonals. The analogy between the two problems refers
to the global spectral features, namely spectral invariance,
that is discussed in detail in Sec. III.

C. Properties of the eigenvalues

In this section, we derive some relations for the eigenval-
ues of the operatorAq, that will be useful in the analysis of
its global properties(Sec. IV). Let m=mR+ iv be an eigen-
value ofAq, andcsxd its eigenfunction:

s− 1dq−1«Dx
2qcsxd + iVsxdcsxd = mcsxd. s2.13d

By multiplying Eq. (2.13) by c̄ and integrating over the unit
interval, one obtains

s− 1dq−1«sDx
2qc,cd + isVc,cd = miciL2. s2.14d

Since sDx
2qc ,cd=−sDx

2q−1c ,Dxcd, by iterating the
integration-by-parts procedure one finally obtains

− «iDx
qciL2

2 + isVc,cd = miciL2
2 , s2.15d

which indicates that the real and imaginary parts of the ei-
genvalues attain the expressions

mR = −
«iDx

qciL2
2

iciL2
2 , s2.16d

v =
sVc,cd
iciL2

2 . s2.17d

Equation(2.16) shows that all the eigenvalues ofAq possess
negative real part, i.e., thatAq is a dissipative operator. An
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alternative expression for the eigenvalues stems from the in-
tegration of Eq.(2.13) over the unit interval:

s− 1dq−1«E
0

1

Dx
2qcsxddx+ iE

0

1

Vsxdcsxddx= mE
0

1

csxddx.

s2.18d

By enforcing the periodicity ofc, the first integral at the
left-hand side of Eq.(2.18), namelysDx

2qcsxd ,1d, vanishes so
that Eq.(2.18) reduces to

mE
0

1

csxddx= iE
0

1

Vsxdcsxddx, s2.19d

which can be expressed in a more compact form asm
= isc ,Vd / sc ,1d. Equations(2.16), (2.17), and(2.19) are use-
ful expressions which relate the eigenvalues to the norms and
scalar products of the corresponding eigenfunctions. These
expressions will be used in the next section to prove some
scaling properties of the eigenvalues.

III. LOCALIZATION AND UNIVERSALITY

A. Spectral invariance

A first qualitative property characterizing the eigenvalue
spectrum of the operatorsAq is its spectral invariance. To

clarify this concept, let us consider the spectral plots of the
operatorsAq, i.e., the graphical representation of the eigen-
values in themR-v plot. By spectral invariance we mean the
following property: the eigenvalues ofAq for fixed q, taking
« as parameter, lie, at small values of«, onto a single smooth
master set which is the union of a finite number of curve
arcs. This phenomenon is illustrated in Figs. 2(a) and 2(b) for
Vsxd=2p sins2pxd (the ASF potential) for q=1 and q=2,
respectively. These plots show the occurrence of a pitchfork-
like set which is a characteristic feature of the spectral plot of
Aq independently ofq in the presence of a sinusoidal imagi-
nary potential.

A similar phenomenon has been observed by Hatano and
Nelson[19,20] for non-Hermitian quantum operators and has
been addressed further by Goldshein and Khoruzhenko[21]
for random matrices arising from the physics of magnetic
flux lines.

The inspection of the spectral plots depicted in Fig. 2
permits to infer the following observations about the spec-
trum of Aq. The spectrum is composed by both complex and
real eigenvalues. It is symmetric around themR axis, which
means that for any complex eigenvaluem, its complex con-
jugatem̄ belongs to the spectrum. This property is related to
the symmetries of the potential(see the discussion in Sec.
III D ). The dominant eigenvalue(i.e., the eigenvalue pos-
sessing the smallest real part in absolute value) is complex
and its real part approaches 0 as«→0. Conversely, at large
Pe numbers, its imaginary part approaches 2p.

These properties are explained in the next section as a
consequence of eigenfunction localization, which implies
several other results, among which the occurrence of an uni-
versal scaling law for the real part of the eigenvalue with
respect to the Peclet number.

B. Eigenfunction localization

Let us consider again the sinusoidal potentialVsxd
=2p sins2pxd and the behavior of the dominant eigenfunc-
tions. Figures 3(a) and 3(b) show the behavior of the

FIG. 2. Spectral plots −mR-v of Aq for Vsxd=2p sins2pxd
showing spectral invariance. The tail of the eigenvalue spectrum
diverging to infinity along the real line is not shown for enhancing
visualization of the forklike structure.(a) q=1 (Laplacian operator)
(s) refers to Pe=103, (P) to Pe=53103. (b) q=1 (Biharmonic
operator) (s) refers to Pe=23104, (P) to Pe=105.

FIG. 3. Dominant eigenfunctionucsxdu vs x for Aq in the pres-
ence of the ASF potential for several values of the Peclet number
Pe=«−1. (a) q=1. Pe=53102, 103, 53103, 104, 53104, 105, 5
3105. (b) q=2. Pe=23103, 53103, 104, 53104, 105, 106. The
arrows indicate increasing values of Pe.
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modulusucsxdu of the dominant eigenfunction1 csxd for dif-
ferent values of the Peclet number(i.e., of «) for the opera-
tors A1 [Fig. 3(a)], andA2 [Fig. 3(b)]. The dominant eigen-
function is localized around the critical pointx=1/4, which
corresponds to the local maximum of the potential(due to
the symmetry of the potential, the eigenfunction associated
with the complex-conjugate eigenvalue is localized around
the local minimum atx=3/4, seeSec. III D).

Henceforth, we will indicate with the notationc«sxd an
eigenfunction of the generalized non-Hermitian operatorAq
for a fixed value« of the parameter corresponding to the
reciprocal of the Peclet number. The family of dominant
eigenfunctions, parametrized with respect to«, can be res-
caled into a single master curvegsjd, by considering the
following scaling relation:

c«sxd = A−1s«dgSx − xc

bs«d
D , s3.1d

wherexc=1/4, bs«d is the scaling factor andAs«d=bs«d a
normalization factor. Figures 4(a) and 4(b) show the results
of the normalization Eq.(3.1) for the two families of domi-
nant eigenfunctions depicted in Fig. 3. The physical meaning
of bs«d is essentially the “boundary-layer width” within
which the eigenfunctions are localized. This quantity follows
a power-law scaling with«, bs«d,«1/4, see Fig. 5, for the
second-order operatorA1, while bs«d,«1/6 for the fourth-
order operatorA2. A theory justifying the occurrence of this
scaling law is developed in the next section in the more
general framework of spectral universality exhibited by this
class of non-Hermitian operators.

Let us complete the phenomenological description of the
eigenfunction properties. Eigenfunction localization around
the potential extrema(critical points) characterizes the fam-

ily of eigenfunctions associated with complex eigenvalues.
To give an example, Figs. 6(a)–6(c) depict the shape of the
first three dominant eigenfunctions associated with complex
eigenvalues for Pe=104. The eigenfunctions are ordered in
an increasing way with respect to the absolute value of the
real part. All of these eigenfunctions display localization
aroundxc=1/4 and, as the order increases, the occurrence of
multiple local maxima/minima. Due to the symmetry of the
potential, for each eigenvaluem, its complex conjugate be-
longs to the spectrum. Since the eigenfunction associated
with m̄, can be obtained by symmetry from the eigenfunction
associated withm (see Sec. III D), the plot of these eigen-
functions has not been reported.

Due to the splitting of the eigenvalue spectrum into a real
and complex branches, which makes the spectral plots to
attain a typical forklike structure, there exist eigenfunctions
of Aq associated with real eigenvalues. Numerical simula-
tions indicate that the eigenfunctions belonging to the real
part of the spectrum are not localized.

C. Universality in the eigenvalue spectra

Eigenfunction localization and its rescaling onto a single
master curve for«→0 (see Fig. 4) is a manifestation of a
fundamental physical property of the non-Hermitian opera-
tors Aq, namely the universality of eigenvalue scaling with
the Peclet number. By assuming the localization rescaling2

Eq. (3.1), we derive its functional implications as it regards
the behavior of the dominant eigenvalue with«.

It is convenient to consider first a particular family of
symmetric potentials, and to extend subsequently the impli-
cations of the results obtained for genericVsxd. The class of
potentials considered is characterized by the following prop-
erties: (i) Vsxd is continuous and possesses generalized de-
rivative in ]0, 1[; (ii ) Vsxd=−Vs1−xd; (iii ) Vs0d=0; (iv) Vsxd
is unimodal in ]0, 1/2[. Therefore, this class of potentials
shows the occurrence of a single local maximum atx=xm,

1Spectral analysis was performed by expanding the eigenvalue
problem Aqfcg=mc in Fourier series. The number of Fourier

modeshe2pikxjk=−N
N adopted in the spectral analysis varies with the

Peclet number, in order to ensure numerical accuracy: we consider
N=100 for low Peclet values Pe=102–103, up to N=1600 for Pe
=106. The eigenfunctions depicted in Fig. 3 are normalized to unit
L1 norm.

2It is worth pointing out, that eigenfunction localization represents
an empirical finding, while the rest of the analysis, namely the
universal scaling, derives from it, and from the functional relations
Eqs.(2.16) and (2.19).

FIG. 4. Rescaling of the dominant eigenfunction into a single
master curveAs«duc«sxdu vs sx−xcd /bs«d. (a) OperatorA1. Three
values of Pe=104, 105, 106 are depicted.(b) OperatorA2. Three
values of Pe=23104, 105, 106 are depicted. The arrow indicates
increasing values of Pe.

FIG. 5. Boundary-layer widthbs«d vs «=Pe−1. Filled dots(P)
refers toA1, open circles(s) to A2. Line (a) is the scalingbs«d
,«1/4, line (b) is bs«d,«1/6.
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and a single local minimum atxm8 . By the properties ofVsxd
it follows that xm=1−xm8 andVsxm8 d=−Vsxmd.

Let us indicate withVpersxd the periodicization of a ge-
neric potentialVsxd over the real line. Since the spectral
properties are invariant under translations of the potential,

i.e., the operatorsAq andÃq associated withVsxd and Ṽsxd
=Vsx−ad wherea is a real number, possess identical eigen-
value spectra, instead of the potentialVsxd, we may always

consider the translated potentialṼsxd=Vpersx−xmd. This ob-
servation is made exclusively in order to simplify the nota-
tion by translating the critical point at the origin, so that the
expression for the series expansion of the potential near the
critical point attain a simpler form.

The potentialṼsxd possesses the maximum atx=0. Let us
expandsVsxd near its local maximum

Ṽsxd = VM − V1uxug + osuxugd, s3.2d

whereg is the nonlinearity exponent characterizing the be-
havior of the potential near the critical point. In the case of
the sine-flow potentialg=2, since this potential possesses a
quadratic nonlinearity in the neighborhood of the critical
point. Throughout this section, we keep using the notation
Aq to indicate the operator Eq.(2.9) associated with the

translated potentialṼ.
Let ms«d and c«sxd be the dominant eigenvalue and the

associated eigenfunction for the operatorAq for a value« of
the parameter. Let us further assume the validity of Eq.(3.1),
i.e.,

c«sxd = uA−1s«dgsjduj=x/bs«d. s3.3d

Before developing further the analysis it is important to point
out that Eq.(3.3) does not imply any assumption on the
functional form of bs«d, other that it decays to zero as«
→0.

By substituting Eq.(3.3) into Eq. (2.16), and performing
the change of variablej=x/bs«d, it follows that

− mRs«d =
«

b2qs«d

E
−1/2bs«d

1/2bs«d

uDj
qgsjdu2 dj

E
−1/2bs«d

1/2bs«d

ugsjdu2 dj

, s3.4d

whereDjgsjd=dgsjd /dj. Since the functiongsjd is vanish-
ingly small outside a narrow interval centered atj=0, and

since for«→0 the integration limits approach ±̀, Eq. (3.4)
implies that

− mRs«d . C
«

b2qs«d
, s3.5d

where C=e−`
` uDqgsjdu2 dj /e−`

` ugsjdu2 dj is a positive con-
stant. We may use Eq.(2.19) to get an alternative expression

for mRs«d. By enforcing Eq.(3.3) with Vsxd replaced byṼsxd,
and making the same approximations applied above for the
integrals Eq.(3.4), as it regards the integration limits, one
obtains

ms«dE
−`

`

gsjddj = iE
−`

`

Ṽ„bs«d…gsjddj. s3.6d

Owing to the fact thatgsjd is localized aroundj=0, the
integral at the r.h.s. of Eq.(3.6) depends on the local behav-
ior of V(bs«dj) nearj=0. Therefore we can apply the local
expansion Eq.(3.2), thus obtaining a linear system for the
two unknownsmRs«d andvs«d,

FA0,R − A0,I

A0,I A0,R
GFmRs«d

vs«d G = F− VMA0,I + V1bgs«dA1,I

VMA0,R − V1bgs«dA1,R
G ,

s3.7d

where

A0,k =E
−`

`

gksjddj, A1,k =E
−`

`

ujuggksjddj, k = R,I

s3.8d

and gsjd=gRsjd+ igIsjd. The solution of the linear system
(3.7) is:

− mRs«d = bgs«d
V1sA0,IA1,R − A0,RA1,Id

A0,R
2 + A0,I

2 , s3.9d

vs«d = VM − bgs«d
V1sA0,RA1,R + A0,IA1,Id

A0,R
2 + A0,I

2 . s3.10d

Let us first consider the scaling behavior of the eigenvalues
with «. By equating Eqs.(3.5) and (3.9) it follows that

bs«d = B«1/s2q+gd = B«h, s3.11d

whereB is a positive constant, and therefore from Eq.(3.5)
one obtains

FIG. 6. Modulusucsxdu of the
first three dominant eigenfunc-
tions [from (a) to (c)] of the op-
erator A1 in the presence of the
sinusoidal (ASF) potential Vsxd
=2p sins2pxd.
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− mRs«d , «a , Pe−a, s3.12d

where the exponenta is given by

a =
g

2q + g
. s3.13d

Equation (3.13) is the main result regarding universality,
since it expresses the scaling behavior of the dominant ei-
genvalue as a function of the local behavior near the critical
point, and of the order 2q of the differential operatorAq. In
a similar way, Eq.(3.10) indicates that the imaginary part
vs«d behaves for«→0 as

uVM − vs«du , «a , Pe−a, s3.14d

i.e., it approachesVM following a scaling law analogous to
that one characterizing the real part.

Equations(3.12) and (3.13) predict that forq=1 andg
=2 (quadratic potential near the critical point), the real part
of the dominant eigenvalue follows the scaling −mR
,Pe−1/2, which corresponds to the convection-enhanced re-
gime. Conversely, for the fourth-order operatorAq with q
=2, and with Vsxd quadratic near the critical point, Eqs.
(3.12) and (3.13) yield −mR,Pe−1/3. The comparison with
the spectral results is depicted in Fig. 7, forq=1, 2, revealing
the perfect agreement between theory and simulations. The
power-law Eq.(3.12) characterizes the entire family of com-
plex conjugate eigenvalues(corresponding to the two arms
of the fork depicted in Fig. 2). This is shown in Fig. 7[see
lines (a) and (b)] for the first and second dominant eigen-
value.

It is important to observe that Eqs.(3.11)–(3.14) express a
universality principle in the scaling of the spectral properties
with « (or Pe), for «→0, since the scaling exponents(a and
h) are not influenced by the fine details of the potential, but
depend exclusively on the behavior near the critical point3

(expressed by the exponentg).

Equations (3.11)–(3.14) are the core of auniversality
theory for the spectral properties in homogenization dynam-
ics (restricted to two-dimensional autonomous flows). This
theory is grounded on the properties of three scaling expo-
nents: the exponenth associated with the scaling of the
boundary-layer widthbs«d Eq. (3.11), the exponenta char-
acterizing the decay of the real part of the dominant eigen-
value Eq. (3.12), and the exponentj which refers to the
relaxation properties of the imaginary part towardVM, uVM
−vs«du,«k, Eq. (3.14). The relations between these three
exponents are

a = gh,
s3.15d

k = a.

In order to assess further the validity of Eq.(3.12), let us
consider a family of trapezoidal potentials[see Fig. 8(a)]:

Vsxd =5
2px/h, x Pfg0,hfg,

2p, x Pfgh,1/2 −hfg,

ps1 − 2xd/h, x Pfg1/2 −h,1/2 +hfg,

− 2p, x Pfg1/2 +h,1 −hfg,

2psx − 1d/h, x Pfg1 − h,1fg,

s3.16d

wherehP f0,1/4g. The potentials Eq.(3.16) are continuous
for any hP g0,1/4g. For h=1/4, Eq. (3.16) yields a tent
potential and thereforeg=1. For h→0, Vsxd approaches a
discontinuous square-wave potential. In the “pathological”
case of a potentialVsxd which possesses maxima and
minima, in the neighborhood of whichVsxd is constant(flat
critical points), the valueg=` can be assigned to these criti-
cal points, sinceg=` can be viewed as the limit value for
the exponentsgn, n=1,2, . . .associated with an analytic se-
quences of potentialsVnsxd converging toVsxd.

Therefore, for intermediate values ofh,1/4, Eq.(3.16)
yields a trapezoidal symmetric potential, which is flat near
the critical point, thusg=`. Equation (3.13) predicts the
valuea=1/3 forh=1/4,q=1, while for any other value ofh
within the intervalf0,1/4f, a=1, i.e., the dominant eigen-
value scales “diffusively.” Figure 9 depicts the behavior of
−mR vs Pe for the operatorA1 driven by the potential Eq.
(3.16). For h=1/4 [line (a)] the scaling −mR,Pe−1/3 is ob-

3In this exclusive meaning, these equations can be viewed as
“analogous” to the Feigenbaum universality characterizing the
period-doubling bifurcation for unimodal maps on the interval.

FIG. 7. Real part of the dominant eigenvalues −mR vs Pe for the
operatorsAq in the presence of the ASF potential. Open circles(s)
q=1, dominant eigenvalue,(n) q=1 second dominant eigenvalue,
(P) q=2 dominant eigenvalue. Lines(a) and (b) are the scaling
−mR,Pe−1/2, line (c) −mR,Pe−1/3 as predicted by Eqs.(3.12) and
(3.13).

FIG. 8. (a) PotentialVsxd given by Eq.(3.16). Line (a) refers to
h=1/4, line (b) to h=0.1. (b) Multimaxima potential Vsxd
=2pfsins2pxd+0.5 sins8pxdg.
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served, while forh→`, corresponding to a square-wave dis-
continuous potential[line (b)], −mR,Pe−1, as predicted by
Eq. (3.13) for g→`. The behavior for intermediate values of
h is particularly interesting. Whenh is small [h=0.05, line
(c) in Fig. 9], the scaling of the real part of the dominant
eigenvalue follows a power-law decay with an exponenta
=1. As h increases further[h=0.1, line (d) and h=0.2, line
(e)], a crossover in the −mR-Pe plot appears. This phenom-
enon is evident forh=0.2 [line (e)], which for Pe,103 dis-
plays a behavior similar to that corresponding to the tent
potential [line (a)], while asymptotically(i.e., for large Pe)
follows the diffusive scaling −mR,Pe−1, as predicted by Eq.
(3.13) for g→`.

Let us consider the spectral results for the imaginary part
vs«d, which are depicted in Fig. 10 forq=1 andq=2 for
different potentials: the ASF and the tent potentials. Numeri-
cal spectral results are in perfect agreement with the theoret-
ical scaling Eq.(3.14).

To complete the analysis on parallel flows on the torus, let
us consider the case of a velocity field which does not pos-

sess local maxima/minima and is a smooth monotonic func-
tion of x in the open interval(0, 1). Such a potential is mani-
festly discontinuous atx=0 (and x=1, since by periodicity
these two endpoints coincide). A prototypical model for these
class of flows is given byvysxd=x−1/2. By enforcing the
empirical observation that each eigenfunction is localized on
a single side of the discontinuity(not shown for the sake of
brevity), and applying the same approach based on Eqs.
(3.3)–(3.6), it readily follows that for monotonic discontinu-
ous potentials possessing a linear behavior in the neighbor-
hood of the discontinuity, the exponenta is given by

a =
1

2q + 1
. s3.17d

Equation(3.17) implies that monotonic discontinuous poten-
tials possessing a linear behavior close to the discontinuity
falls in the same universality class of the tent potential dis-
cussed above, as can be intuitively argued from physical rea-
sons. In the particular case ofq=1 (Laplacian operator), it
follows thata=1/3.

D. Eigenvalue multiplicity and symmetries

This section addresses eigenvalue multiplicity and how
this is related to the symmetries of the potential. Let us first
consider the simple potential belonging to the class analyzed
in Sec. III C. We have mentioned that ifm is a complex
eigenvalue ofAq, its complex conjugatem̄ is also an eigen-
value. This property follows from the skew symmetry of the
potentialVs1−xd=−Vsxd. To prove this property, letcsxd be
the eigenfunction associated withm, and consider the eigen-
value equation form, csxd,

Dcsxd + iVsxdcsxd = mcsxd, s3.18d

where we setD=s−1dq−1«Dx
2q for simplifying the notation.

By taking the complex conjugate of Eq.(3.18), and making
the transformationx→1−x, it follows that

Dc̄s1 − xd − iVs1 − xdc̄s1 − xd = m̄c̄s1 − xd. s3.19d

By enforcing the skew symmetry of the potential, and defin-

ing fsxd=c̄s1−xd, one obtains

Dfsxd + iVsxdfsxd = m̄fsxd, s3.20d

which implies thatm̄ is an eigenvalue ofAq and fsxd, de-
fined above, is the eigenfunction associated with this eigen-
value.

Let us now analyze more complex potentials possessing
multiple local maxima and minima. The first example is the
symmetric potentialVsxd=2p sins4pxd displaying two local
maxima and two local minima. The spectral plot forA1 is
depicted in Fig. 11(a), and is qualitatively similar to that
characterizing the ASF potential[Fig. 2(a)]. There is how-
ever an important difference: the dominant eigenvaluem is
twofold symmetric, which implies that there exists four lin-
early independent eigenfunction associated with eigenvalues
possessing the same real part(for the skew-symmetric prop-
erties discussed above). Figures 12(a) and 12(b) show the

FIG. 9. Real part of the dominant eigenvalues −mR vs Pe for the
operatorA1 driven by the potential Eq.(3.16). Open circles(s)
refer to the tent potentialh=1/4, solid line (a) to the scaling −mR

,Pe−1/3 as predicted by Eqs.(3.12) and (3.13) with g=1. Filled
dots (P) to the square-wave potentialh=0, solid line (b) to the
scaling −mR,Pe−1 as predicted by the theoretical scaling withg
=`. Lines(c)–(e) refer to the potential Eq.(3.16) for h=0.05, 0.10,
and 0.2, respectively.

FIG. 10. 2p−v vs Pe. Open circles(s) and filled dots(P) refer
to the ASF potential forq=1 andq=2, respectively. Lines(a) and
(b) are the scalings 2p−v,Pe−a with a=1/2, a=1/3, respec-
tively. Triangles(n) refer to the tent potential Eq.(3.16) with h
=1/4, andline (c) represents 2p−v,Pe−1/3.
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imaginary partcIsxd=Imfcsxdg of the two degenerate eigen-
functions associated with the dominant eigenvalue.

In the case of more complex potentials, the landscape of
which possesses several local maxima/minima of different
intensity, many symmetries are broken. This is for example
the case of the potentialVsxd depicted in Fig. 8(b), the func-
tional expression of which is

Vsxd = 2pfsins2pxd + 0.5 sins8pxdg. s3.21d

The spectral plot of the operatorA1 for this potential is de-
picted in Fig. 11(b), and is characterized by an eightfold

branched structure of the complex conjugate eigenvalues,
originated by the presence of eight maxima or minima in the
potential. Figures 13(a) and 13(b) show the spatial profile of
the eigenfunctions for Pe=104 associated with the first two
eigenvalues, the real parts of which are −mr =0.199 and
−mR=0.202. The eigenfunctions are localized around the
critical points of the potential, and the scaling of −mR (not
shown for the sake of brevity) follows for large Peclet num-
ber the universal scaling Eqs.(3.12) and (3.13) with g=2.

IV. IMPLICATIONS OF UNIVERSALITY
FOR PHYSICALLY REALIZABLE FLOWS

The results obtained in the preceding section for the spec-
tral properties of parallel flows provide a direct physical ex-
planation for the scaling behavior of more complex two-
dimensional autonomous flows. This is a consequence of the
universality properties characterizing the eigenvalue scaling,
that indicates that the exponenta depends exclusively on the
behavior of the velocity field near the critical points. It is just
because the scaling of the eigenvalues belonging to the
convection-enhanced branch of the spectrum depends on the
local properties of the velocity field that it is possible to
obtain prediction for generic two-dimensional autonomous
flows starting from the spectral information obtained for par-
allel flow models.

The physical reason for this observation stems from the
fact that the qualitative behavior of two-dimensional autono-
mous flows can be locally described by means of a parallel
flow model.

To clarify this concept, let us consider two examples. The
first is a model flow on the two-dimensional torus(i.e., on
the unit squareI2 with opposite edge identified), the stream
function of which is given by

Csx,yd = −
1 − c

2p
coss2pyd +

1 − c

2p
coss2pxd

+
c

2p
sins2pxdsins2pyd. s4.1d

As an illustration, Fig. 14(a) shows the streamline structure
for the case wherec=1/2. Thevelocity field resulting from

FIG. 11. Spectral plots −mR-v of Aq for multimaxima poten-
tials. (a) q=1, Vsxd=2p sins4pxd. Open circles(s) refer to Pe=2
3103, filled dots (P) to Pe=104. (b) q=1, Vsxd=2pfsins2pxd
+0.5 sins8pxdg. Open circles(s) refer to Pe=53103, filled dots
(P) to Pe=104. Labels 1–8 indicate the eightfold branched structure
of the complex conjugate eigenvalues.

FIG. 12. (a)–(b) Imaginary part of the two dominant degenerate
eigenfunctionscIsxd vs x for the operatorA1 associated with the
potentialVsxd=2p sins4pxd for Pe=104.

FIG. 13. Modulusucsxdu of the first two dominant eigenfunc-
tions (a) and (b) of the operatorA1 in the presence of the multi-
maxima potentialVsxd=2pfsins2pxd+0.5 sins8pxdg for Pe=104.
The dotted lines in both panels represent the potentialVsxd /2p,
drawn in order to highlight the location of its critical points.
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the stream function is by definition given byvsxd
=s]C /]y,−]C /]xd

The second example is the cavity flow in a unit square
cavity Q2=hsx,yd u0øx,yø1j in the creeping flow regime.
We use two different symbols,Q2 andI2 to indicate the unit
square, since in the latter case, i.e.,I2 the opposite edges are
identified, and therefore periodic boundary conditions apply,
while for the cavity flow, zero-flux conditions must be en-
forced at the boundary of the cavity to express the imperme-
ability condition. The stream functionC for the creeping
cavity flow [Fig. 15(a)] is the solution of the biharmonic
equation,¹4C=0 with zero velocity at all the edges but at
y=1, at which vx=1. In terms ofC this implies that the
tangential derivative along the boundary vanishes together
with the normal derivative at the static walls, whereas
]C /]n=−1 aty=1 along the moving wall.

The solution of the advection-diffusion equation for this
flow systems has been obtained by applying a Galerkin ex-
pansion with respect to the eigenbasis of the Laplacian op-
erator (see, e.g.,[22] for details on the numerical accuracy
and on the truncation order).

Both these flows are characterized by the occurrence in
the mixing space of recirculation regions: two recirculation
regions for the stream function Eq.(4.1) on the torus, delim-
ited by a X-shaped separatrix[see Fig. 14(a)], and a single

main recirculation region invading the whole mixing space
for the cavity flow[see Fig. 15(a)].

Within each recirculation region one can express the
advection-diffusion equation in a new coordinate system, in
which one of the coordinates is the stream function itself,
and the other coordinate is chosen orthogonal to it(stream-
function-based coordinate system). If one expresses the ADE
in a stream-function-based orthogonal system, the velocity
field possesses solely one nonvanishing component(since it
is tangent to the streamlines), analogously to the simple
model flows considered in this paper(parallel flows). This
can be easily visualized for the square cavity flow, since, by

FIG. 14. (a) Contour plot of the stream function Eq.(4.1). (b)
Real part with reversed signln of the dominant eigenvalues of the
diffusive (P) and convective(s) branch as a function of Pe for the
flow on the torus generated by the stream function Eq.(4.1). Lines
(a) and (b) represent the scaling lawsln,Pe−1 and ln,Pe−1/2,
respectively.

FIG. 15. (a) Contour plot of the stream function for the cavity
flow on the unit square in creeping flow regime.(b) Real part with
reversed signln of the dominant eigenvalues of the diffusive(P)
and convective(s) branch as a function of Pe for the cavity flow
depicted in(a). Lines (a) and (b) represent the scaling lawsln

,Pe−1 andln,Pe−1/2, respectively.(c) vxsyd at x=1/2 for thecav-
ity flow on the unit square.

GIONA et al. PHYSICAL REVIEW E 70, 046224(2004)

046224-10



symmetry, atx=1/2, thecoordinate line orthogonal to the
stream function coincide with the linex=1/2 parallel to the
y axis. Due to the recirculating structure of the velocity field,
the nonvanishing component of the velocity field possesses a
nonmonotonic behavior with the occurrence of a single local
maximum/minimum. This is clearly depicted in the case of
the cavity flow[Fig. 15(c)], which showsvxsyd along the axis
of symmetryx=1/2.

By enforcing the universality results obtained for parallel
flows, one may expect that the behavior of the nonvanishing
velocity fields near its local extremal point influences the
scaling behavior of the dominant eigenvalue of the
convection-enhanced branch as a function of the Peclet num-
ber. Since it is a generic property that smooth functions in a
neighborhood of a local extremal point possesses a quadratic
nonlinearity, it may be argued that for flow possessing a
recirculation region the scalingln,Pe−1/2 will occur for the
convection enhanced branch(apart from a set of flow of zero
measure). This prediction is confirmed by direct numerical
simulations of the advection-diffusion equations depicted in
Figs. 14 and 15(b), which show the dominant eigenvalues of
the two branches of the two flow system described above:
the diffusional branch, for whichln,Pe−1, and the
convection-enhanced branch, for whichln,Pe−1/2, as cor-
rectly predicted by the universality theory in the neighbor-
hood of a quadratic nonlinearity.

The same approach discussed above, applies for more
complex flow structure possessing more than a single recir-
culation region, since the analysis developed is of local
nature.

It is important to observe that there are physically inter-
esting flow models, which do not possess recirculation re-
gions. For these flows, the velocity component in a stream-
function-based coordinate system may be monotonic, and the
flow motion is controlled by the topology of the flow do-
main. A typical example is the two-dimensional creeping
flow between two concentric cylinders(two-dimensional
Couette flow). For the two-dimensional creeping flow be-
tween concentric cylinders possessing radiiR1 and R2, in
which the outer cylinder is moving with velocityVR2, the
velocity field in a cylindrical coordinate systemsr ,ud pos-
sesses solely a nonvanishing componentvusrd, given by

vusrd = Vr
1 − sR1/rd2

1 − sR1/R2d2, R1 , r , R2. s4.2d

This velocity field is monotonic[see Fig. 16(b), for R1
=1/2, R2=1, V=1]. The creeping Couette flow is a parallel
flow in a cylindrical coordinate system characterized by a
monotonic velocity, and the universality theory developed in
this paper, see Eq.(3.17), predicts the occurrence of the scal-
ing ln,Pe−1/3, for the convection-enhanced branch. This re-
sult is confimed by the direct numerical simulation of the
advection-diffusion equation for the creeping flow system,
depicted in Fig. 16(a) (these data have been obtained by
applying a finite volume algorithm, starting from an initial
condition, dependent on the angular variableu which excites
the convection-enhanced branch and possesses vanishing
components on the diffusive branch of the eigenspectrum).

The examples and the discussion developed in this section
show the practical and physical usefulness of the universality
theory developed for parallel flow models for predicting the
homogenization/dispersion properties of two-dimensional
autonomous flows.

V. CONCLUDING REMARKS

By considering simple model flows Eq.(2.2), we have
recast the theoretical analysis of the spectral properties of the
advection-diffusion equation in a simpler problem formally
analogous to a one-dimensional non-Hermitian Schrödinger
equation in the presence of an imaginary potential.

The salient spectral properties of these non-Hermitian op-
erators are(i) spectral invariance;(ii ) eigenfunction localiza-
tion, and(iii ) universal eigenvalue scaling. The analysis of
the universal scaling leading to Eqs.(3.12) and (3.13) pro-
vides a theoretical justification of the observed convection-
enhanced behavior occurring in homogenization dynamics in
bounded flows, and represents an example of the relation-
ships existing between local properties(the exponentg) and
global spectral features(the exponenta).

The universality theory developed for parallel flows pro-
vides a theoretical framework for understanding homogeni-
zation properties of more complex flows, as addressed in
Sec. IV. While the occurrence of a Pe−1/2 scaling is a generic
property characterizing flows possessing recirculation re-
gions, there are physically relevant examples(the creeping
Couette flow), for which a different scalings,Pe−1/3d is ob-
served. The theory explains the occurrence of all these cases.

FIG. 16. (a) Real part with reversed signln of the dominant
eigenvalue of and convective branch as a function of Pe for the
Couette flow(R1=0.5,R2=1). The solid line isln,Pe−1/3. (b) Ve-
locity vusrd vs r for the Couette flow.
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It is remarkable that even the family of operatorsAq pos-
sesses a rich spectral structure: complex eigenvalue “spectral
arms” coexist with a real branch, giving rise to the forklike
spectral plots depicted in Fig. 2. Moreover, the number of
complex eigenvalue arms in the absence of specific symme-
tries is related to the number of critical points(maxima/
minima) of the potential.

Equation(3.13) indicates that the “worst” scaling condi-
tion −mR,Pe−1 is attained in the presence of a potential
possessing a flat region, as extensively discussed in connec-
tion with the family of potentials Eq.(3.16). Conversely, it
may be argued that the “optimal” scaling conditionmR
,constant for Pe→` may be achieved by considering con-

tinuous but locally nondifferentiable potentials possessing
cusplike local maxima. Whether and how the latter observa-
tion can be related to fluid dynamics, is an open problem.

Beyond the relatively straightforward analogy between
the advection-diffusion equation, and a class of non-
Hermitian Schrödinger-type operators[the family of opera-
torsAq Eq. (2.9), and specificallyA1], an intriguing issue is
whether and how this analogy could be pushed further, espe-
cially in the presence of more complex velocity fields giving
rise to a partially chaotic condition. This is an open question,
that could have important conceptual implications in the
characterization of quantum chaos, and in the analysis of the
semiclassical limit of quantum mechanics.
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