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Advection diffusion in nonchaotic closed flows:
Non-Hermitian operators, universality, and localization
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The qualitative spectral properties characterizing the advection-diffusion operator in two-dimensional steady
incompressible flows can be obtained from the analysis of simple model flows on the torus, the velocity field
of which attains the simple expressiufx)=(0,v,(x)). For this class of simple flows, the advection-diffusion
operator reduces to a one-dimensional Schrédinger operator in the presence of an imaginary potential, which
shares some spectral analogies with non-Hermitian quantum opeatprsspectral invariangeand is char-
acterized by eigenfunction localization. The latter propérgy, eigenfunction localizatigns strictly related to
the occurrence of a universal scaling of the eigenvalue spectrum with the Peclet number, the scaling exponent
of which depends exclusively on the local behavior of the potential close to its critical points. The analysis is
extended to a class of unbounded non-Hermitian operators, which include the Laplacian and the biharmonic
operators coupled to an imaginary potential as special cases.
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[. INTRODUCTION that the long-time, long-distance dynamics of the solutions of

. Eq.(1.2) in unbounded domains approaches that associated
) : ) ’ . . i Uith a pure diffusion equation with constant tensor diffusiv-
in fluid dynamics and in many applied fields: environmentaliy, 111] (see alsd12]). This result stems from the application
sciences(pollutant dispersion [1], chemical engineering of perturbation and asymptotic analy§is] to Eq. (1.1).
(mixing and chemical reaction in stirred vess3did,3], etc. In the study of dispersion in closetounded flows, the
Under the assumption that the velocity field is incompressynalogy between Eql.1) and stochastic differential equa-
ible (i.e., V-v=0), dispersion is mathematically described by tjons is less useful, since all the statistical indicators, such as
the advection-diffusion equatiotADE) which, in dimen-  the mean square displacement, saturate asymptotically to-

sionless form, attains the expression: ward a constant value which is related to the finite size of the
domain. Consequently, the quantitative description of disper-

96 __ V-V ¢+eV2g, (1.1  sionin closed flows should be focused on how advection will

ot eventually modify and enhance the rate at which equilibrium

h —pel is th . | of th | b is approached with respect to the case where diffusion is the
where e=Pe - is the reciprocal of the Peclet number Pe only transport mechanism operating.

=VcL/D (Ve L being characteristic velocity and length for i to)16ws from the above observation that the mathemati-
the system, an@® being the diffusivity. The Peclet number o joscription of dispersion in unbounded and closed flows

represents the ratio of the characteristic time of diffusion tag intrinsically different. It is grounded on asymptotic analy-

that of advection. sis and stochastic methods for open flows, while it is cen-

Equation(1.1) has been analyzed for different classes Ofigro on the spectragigenvalue/eigenfunctigrharacteriza-
velocity fields: oper{4—€] and closed7-10 flows, and for 5, iy pounded domainsince the eigenvalues of the

families of flows possessing different kinematic features,qyection/diffusion operator correspond to the intrinsic rates
(nonchaotic, partially chaotic, and globally chaotic flows

o o of homogenization, and its eigenfunctions to the spatial pat-
The nature of the flow domaig.e., whether it is bounded oo thzg[ will eventually appgnr P P

or nop influences the way dispersion features must be con- geyera| authors have analyzed the qualitative features of
sidered and quantified. In unbounded flows, dispersion Cotg,magenization in bounded domain in the presence of com-
rgsponds to the propagation of an |_n|t|§1I dlsturba}nce_ by th%lex flow protocols yielding Lagrangian chafg-10. Dif-
simultaneous action of a given velocity field and diffusion. 'nferent scaling exponents of the eigenvalues with the Pe num-

this case, dispersion dY”am'CS can be co'nvenlently recast i, have been observed and qualitatively associated with the
the form of a stochastic Langevin equation. Consequentlyy; o matic features of the stirring protocol.

dispersion properties can be described by means of statistica The present paper deals with a relatively simpler class of

indicators(such as the mean square diSP'ace.me'?@q”iva' flows (two-dimensional autonomoysn the presence of de-

lently, through the scaling of the effective diffusivity tensor o ministic velocity fields, for which the theoretical aspects

as a function of the molecular diffusivity. It has been shownof homogenization need to be clarified. Specifically, we ana-
lyze first a subclass of these flows, namely, the model flows
on the two-dimensional torus for whiah=(0,v,(x)) (which

* Author to whom correspondence should be addressed. can be referred to as parallel flowsand subsequently we
Email address: max@giona.ing.uniromal.it show that the spectral results obtained for these model flows
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can be used to predict the scaling behavior of generic two- 10°
dimensional autonomous flows. The latter claim is supported

by an extensive analysis of typical two-dimensional flow

structures.

Stemming from the spectral structure of the ADE in this 3
class of flowgparallel flowg, a connection between between < 10
homogenization dynamics and non-Hermitian quantum me-
chanics is also discussed. We show that there exists a close
analogy between Eql1.1) and the Schrodinger equation in
the presence of an imaginary potential, and that, likewise the . . . ‘
quantum analogous, homogenization is characterized by 102 10° 10* 10°
spectral invariance. Moreover, universal spectral scaling and Pe
eigenfunction localization are the other salient features char-
acterizing the non-Hermitian operators associated with ho- FIG. 1. Real part with reversed sigy, of the dominant eigen-
mogenization dynamics. values of the diffusive and convective branch as a function of Pe for

The paper is organized as follows. Section Il introduceghe ASF. Line(a) and(O) refer to the diffusive branch, lings) and
the concept of imaginary potential for parallel flows and de-(®) to the convection-enhanced branch.
scribes the analogy with non-Hermitian quantum mechanics.

Section |l addresses the occurrence of universality and V(X) = (0,v(X)) (2.2

eigenfunction localization. Specifically, starting from the em- ) _ N
pirical observation of the eigenfunction localization, we With & single nonvanishing component of the velocity field

prove that a universal scaling occurs in the behavior of thévhich, due to incompressibility, depends solely on the other

dominant eigenvalue as a function of the Peclet numbeiSoordinate. These model flows can be referred tpaaallel

which is controlled exclusively by the local properties of the flowson the torus. _ _

flow. The autonomous sine-flowWASF), defined by v,(x)
Finally, Sec. IV addresses how the spectral results and theSin(27x) belongs to this class, and has been widely inves-

universality properties can be applied to predict the spectrdigated in the literaturg16,17. Its eigenvalue spectrum pos-

behavior of physically realizable flowthe cases of the cav- S€sses two branchésee Fig. 1 a diffusive branch, charac-

ity flow, the Couette flow, and of other model flows on theterized by real eigenvalues, for which thk,s are

torus are addressgd proportional toe, i.e., \,~Pe?, and aconvection-enhanced
branch, for which\’s are proportional to the square root of
Il IMAGINARY POTENTIAL AND NON-HERMITIAN g, i.e.,\,~1/yPe. The dominant eigenvalgie., the eigen-
OPERATORS value possessing the smallesf) belongs to the diffusive

Let us consider the advection-diffusion equatich?) branch, and the structure of the corresponding eigenfunction
driven by autonomous velocity fieldgx) in a closed two-  closely resembles that of the streamfunctiorsasO. _
dimensional domain\ of the Euclidean plane. Since the The aim of the next two sections is to analyze in detail the
normal component of the velocity field vanishes at theSPectral properties of parallel flows.
boundarydM, Eq. (1.1) satisfies the boundary condition of
Neumann type, namely the normal derivativedpianishes
at oM. Alternatively, a convenient prototype of flow domain

of a spatially confined flow is the two-dimensional torus, i.e., _ L€t us consider the class of flows defined by Ej2) in
M=72 whereZ? is the unit squard?={(x,y)|0=<x,y<1}, 72, the ASF being a particular example of this class. The

with opposite edges identified. Correspondingly, Ej), advection-diffusion operator for these flows attains the form

A. Imaginary potentials

defined inZ?, is equipped with periodic boundary conditions. 2 p
; ; d¢ Fd FP
Theoretical results from the theory of linear operator LIP)(X)=-vyX)—+e| —Z+— . (2.3
[14,15 ensure that the advection-diffusion operator % x oy
L£=-V(X)-V +£V? 2.1 By introducing the function/(x,t) defined by
possesses the following propertigs: it admits a countable B(x,1) = €712TMyeATI 1) (2.9

set qf separated e|genvalue{s,) the corresponding eigen- wherem is an integer and=y~1, the ADE becomes
functions form a complete basis in the space of square sum-

mable functions inM, fulfilling either Neumann or period- o P

icity conditions(see above (iii ) all of the eigenvaluegwith i i2mmoy(X) i + e 2 (2.9

the exception of the zero eigenvalue corresponding to the

constant eigenfunctiorpossess negative real pattirough-  Therefore, homogenization dynamics described by(Ed)

out this paper we use the symbyq] to indicate the real part on the unit square reduces to a countable family of second-

of the eigenvalues with reversed sjgn order differential problems on the unit intervgdD,1]
Throughout this section we consider, a simple model forequipped with periodic boundary conditions, defined by the
an incompressible flow, which attains the structure evolution operators A #]=iV(X)y+e d?y/dx?, where
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Vn(X)=2mmo,(x). The casen=0 gives rise to real eigenval- —_ 2q ;
ues, which are the eigenvalues of the diffusion operator o=~ (2mn) ¢n+|%\/n—m¢mr 213
—-e47°n?, n=0,1, ..., andconstitute the diffusive branch of

the eigenvalue spectrum of the advection-diffusion operatotvhere f,, ¢, andV, are the Fourier coefficients df(x),
Apart from the diffusive branch, the spectral properties of thef(x), andV(x), respectively. In the particular case of a sinu-
ADE and the analysis of the origin of the scaling behaviorsoidal potentialcorresponding to the ASFEq. (2.11) be-
characterizing the convection-enhanced branch, can be olbome

tained from the analysis of the operator: ,
5 o= = Q)N + 27(fn-1— ner) - (2.12

d .
Aly] = Sd—xlzrlj +iV(X) ¢, (2.6)  Thus, for the ASF potential, the matrix representation of the
operator A, attains a tridiagonal form, which, fay=1 re-

where V(x)=V;(x), which can be viewed as a second-ordersembles that of a non-Hermitian Schrodinger equation in the
non-Hermitian Schrodinger operator in the presence of aRresence of a tight binding potentigd.g., deriving from a
imaginary potential. More precisely, I, (¢)}, m=..., imaginary vector potential associated with the action of a
-1,0,1,...,n=1,2,... be thesigenvalues ofC defined by ~Magnetic field on a quantum partigl@his problem leads to
Eq.(2.3), {u.(2)} the eigenvalues ofl defined by Eq(2.6), @ nhon-Hermitian second-order operator, characterized by an

respectively, andd, (X, )}, {m(X)} the corresponding sys- almost tridi_agonal matrix rgp_re;gntati@hg—ZJJ. However,
tems of eigenfunctions. We have there are differences and similarities between these two prob-

lems. The differences are related to the properties of the en-

Amn(&) = Mu,(e/m) — edm?m? (2.7 tries of the upper and lower diagonals. In the non-Hermitian
' qguantum mechanical problem, the entries of these diagonals
and are arbitrary positive values, while in the ASF problem, the
i entries are equal within each subdiagonal, and possess oppo-
— qi2mmy
Pmn(xy) =€ Yn(X). (2.8 site sign when considering elements belonging to different

Due to the close relationship between the advectionsubdiagonals. The analogy between the two problems refers
diffusion operator Eq(2.3) and the operatord defined by to the global spectral features, namely spectral invariance,
Eq. (2.6), we will refer toiV(x) as “the imaginary potential that is discussed in detail in Sec. IlI.
generating the flow,” although we stress out that this poten-
tial has nothing to do with the classical concept of velocity C. Properties of the eigenvalues

otential adopted in fluid dynami¢48]. . . . . .
P ! pted in fiuid dy ¢8| In this section, we derive some relations for the eigenval-

_ - ues of the operatad, that will be useful in the analysis of
B. Generalized non-Hermitian operators its global propertiegSec. V). Let u=pug+io be an eigen-
In order to analyze the spectral structure of the opetdtor Value of Ay, andy(x) its eigenfunction:
associated with the ADE, and to define properly its univer- 1.2 _ ~
sality propertiegsee Sec. Ill, let us consider a slight gener- (= DDy (x) + IV P(X) = uip(x).  (2.13
alization of it, by defining the class of differential operators o — i _ _
of increasing orders® q=1,2, ...associated with an imagi- BY multiplying Eq.(2.13 by ¢ and integrating over the unit
nary potential, as interval, one obtains

Af#]= (- DT LeDP+ V)Y, q=1,2, ..., (2.9 (= DD, + iV ) = p . (2.19

whereD!=d"/dx". Forq=1, Eq.(2.6) is recovered, while the ~Since (D%, )=-(DF" 'y, Dyp), by iterating the
caseq=2 corresponds to a relaxation dynamics driven by antegration-by-parts procedure one finally obtains
biharmonic operator. an? . 5

The family of operators4, is defined in the functional — &[IDRl 2 + 1 (Vp, ) = plll 2, (2.19
spaceLge,(JO,l[) of square summable complex-valued peri- =~ = ) ) _
odic functions in the unit interval0, 1. This functional which indicates that the real and imaginary parts of the ei-

space is a Hilbert space, equipped with the inner product 9envalues attain the expressions

T ) el DY
(f,9= | f)gdx f,ge Lpe(10,1). (2.10 MR== "5, (2.19
0 l2
We denote with|-||, 2 the norm inherited by it, nameljf| 2
=(f,f)Y2. We use the notatiog to indicate the complex con- o= Vi) _ (2.17
jugate ofg. ||¢||fz

By choosing the natural basis of periodic functions
{g2m> ., the action of the operatad, on a functionyy  Equation(2.16) shows that all the eigenvalues 4f, possess
€ LSeI(]O,l[), Agl#]=1 is expressed by the relation: negative real part, i.e., thad, is a dissipative operator. An
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(a) -Ug FIG. 3. Dominant eigenfunctiofy(x)| vs x for A in the pres-

ence of the ASF potential for several values of the Peclet number

8 Pe="1 (a) q=1. Pe=5x 10, 1C%, 5x 10° 10% 5x10% 10, 5
“ X 10°. (b) g=2. Pe=2x 103, 5x 103, 10%, 5x 10, 10°, 1(°. The
4 '0' 1 arrows indicate increasing values of Pe.
3 0¢ aoee
clarify this concept, let us consider the spectral plots of the
| E) | operatorsAg, i.e., the graphical representation of the eigen-
) e values in theug-w plot. By spectral invariance we mean the
following property: the eigenvalues of for fixed g, taking
8- > ) ”\ v " € as parameter, lie, at small valuesspfonto a single smooth
©) 10 10 10 " 10 10 10 master set which is the union of a finite humber of curve
MR

arcs. This phenomenon is illustrated in Fig&)2and 2b) for

FIG. 2. Spectral plots gr-w of Aq for V(x)=27 sin(2mx) V(X):27,T sin2mx) (the ASF potentigl for =1 andq.:2,
showing spectral invariance. The tail of the eigenvalue spectrurf€Spectively. These plots show the occurrence of a pitchfork-
diverging to infinity along the real line is not shown for enhancing like set which is a characteristic feature of the spectral plot of
visualization of the forklike structur¢a) q=1 (Laplacian operator .4, independently ofj in the presence of a sinusoidal imagi-
(O) refers to Pe=19) (@) to Pe=5<10%. (b) g=1 (Biharmonic  nary potential.
operatoy (O) refers to Pe=X 10, (®) to Pe=16. A similar phenomenon has been observed by Hatano and

Nelson[19,2Q for non-Hermitian quantum operators and has

alternative expression for the eigenvalues stems from the irbeen addressed further by Goldshein and Khoruzh¢akp

tegration of Eq(2.13 over the unit interval: for random matrices arising from the physics of magnetic
flux lines.

) ', Tt 1 The inspection of the spectral plots depicted in Fig. 2

(=11 gfo D) dx + Ifo V(x)zp(x)dxzufo P(x)dx. permits to infer the following observations about the spec-

trum of A,. The spectrum is composed by both complex and

(2.18 real eigenvalues. It is symmetric around thg axis, which

By enforcing the periodicity ofys, the first integral at the Means that for any complex eigenvalugits complex con-
left-hand side of Eq(2.18), namely(D2%(x), 1), vanishes so jugateu belongs to the spectrum. This property is related to

that Eq.(2.18 reduces to the symmetries _of the _potenti@_ee the disgussion in Sec.
D). The dominant eigenvalu@.e., the eigenvalue pos-
1 1 sessing the smallest real part in absolute valsecomplex
,uf P(x)dx= if V(X) A x)dX, (2.19 and its real part approaches 0&s>0. Conversely, at large
0 0 Pe numbers, its imaginary part approaches 2

which can be expressed in a more compact formpuas These propertieg are explained in thg next §ectipn as a
=i(y,V)/(,1). Equationg(2.16), (2.17), and(2.19 are use- consequence of eigenfunction localization, which implies
ful expressions which relate the eigenvalues to the norms arggveral other results, among which the occurrence of an uni-
scalar products of the corresponding eigenfunctions. Thes¢ersal scaling law for the real part of the eigenvalue with
expressions will be used in the next section to prove somé&espect to the Peclet number.

scaling properties of the eigenvalues.

IIl. LOCALIZATION AND UNIVERSALITY B. Eigenfunction localization

A. Spectral invariance Let us consider again the sinusoidal potentilx)

A first qualitative property characterizing the eigenvalue=27 sin(2mx) and the behavior of the dominant eigenfunc-
spectrum of the operatotd, is its spectral invarianceTo  tions. Figures @) and 3b) show the behavior of the
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FIG. 4. Rescaling of the dominant eigenfunction into a single

master curveA(s)|,(x)| Vs (x-x;)/B(e). (a) Operator.A;. Three FIG. 5. Boundary-layer widttB(¢) vs e=Pe™. Filled dots(®)
values of Pe=19 1P, 1¢° are depicted(b) OperatorA,. Three oo t0A,, open circlesO) to A,. Line (@) is the scaling8(z)
values of Pe=X 10, 1P, 1P are depicted. The arrow indicates ~ Y4 line (b) is B(e) ~ s
increasing values of Pe. ' '

modulus|#(x)| of the dominant eigenfuncti&nﬁ(x) for dif- 1:% Z];Vg%ingjxn;rgg?; |a:,35;) (cgi%((jc)w étpﬁ;?Thp;egth: rga;Lu:s.
ferent values of the Peclet numb@e., of¢) for the opera-  firs; three dominant eigenfunctions associated with complex
tors A, [Fig. 3@)], and.A; [Fig. 3b)]. The dominant eigen-  gjgenvalues for Pe=10The eigenfunctions are ordered in
function is localized around th_e critical pom‘;1/4,_wh|ch an increasing way with respect to the absolute value of the
corresponds to the local maximum of the poten{@le 10 o5 part. All of these eigenfunctions display localization
the symmetry of the potential, the eigenfunction associatedndx_=1/4 and, as the order increases, the occurrence of
with the co_mplex—conjugate eigenvalue is localized aro“nqnultiple local maxima/minima. Due to the symmetry of the
the local minimum ab_<:_3/4, seeSec. Il D). potential, for each eigenvalye, its complex conjugate be-

_ Henceforth, we will indicate with the notatios,(x) an  |5ngs to the spectrum. Since the eigenfunction associated
eigenfunction of the generalized non-Hermitian operadgr \yith , can be obtained by symmetry from the eigenfunction

for_a fixed valuee of the parameter corres_ponding to the gssociated withe (see Sec. 111 D, the plot of these eigen-
reciprocal of the Peclet number. The family of dominant,ctions has not been reported.

eigenfunctions, parametrized with respectstocan be res- Due to the splitting of the eigenvalue spectrum into a real
caled into a single master cungté), by considering the  4ng complex branches, which makes the spectral plots to
following scaling relation: attain a typical forklike structure, there exist eigenfunctions
of A, associated with real eigenvalues. Numerical simula-
X— . . . . . .
(%) :A—l(s)g<_XC>, (3.1 tions indicate that the e|genfunct!ons belonging to the real
B(e) part of the spectrum are not localized.
wherex.=1/4, B(e) is the scaling factor ané\(e)=p(¢) a
normalization factor. Figures(d) and 4b) show the results C. Universality in the eigenvalue spectra

of the normalization Eq(3.1) for the two families of domi-
nant eigenfunctions depicted in Fig. 3. The physical meaning Eigenfunction localization and its rescaling onto a single
of B(e) is essentially the “boundary-layer width” within master curve for — 0 (see Fig. 4 is a manifestation of a
which the eigenfunctions are localized. This quantity followsfundamental physical property of the non-Hermitian opera-
a power-law scaling witte, B(e) ~ &4, see Fig. 5, for the tors Agq namely the universality of eigenvalue scaling with
second-order operatod;, while 8(e) ~ £ for the fourth-  the Peclet number. By assuming the localization rescaling
order operatord,. A theory justifying the occurrence of this EQ. (3.1), we derive its functional implications as it regards
scaling law is developed in the next section in the morethe behavior of the dominant eigenvalue with
general framework of spectral universality exhibited by this It is convenient to consider first a particular family of
class of non-Hermitian operators. symmetric potentials, and to extend subsequently the impli-
Let us complete the phenomenological description of thecations of the results obtained for genevix). The class of
eigenfunction properties. Eigenfunction localization aroundpotentials considered is characterized by the following prop-
the potential extremécritical pointy characterizes the fam- erties: (i) V(x) is continuous and possesses generalized de-
rivative in 10, 1; (ii) V(x)=-V(1-x); (iii) V(0)=0; (iv) V(x)

mal analysis was performed by expanding the eigenvalu'eS unimodal in10, 1/7. Therefore, this class of potentials

problem Ag[¢]=uy in Fourier series. The number of Fourier Shows the occurrence of a single local maximunxaky,

modes{ez’fikx},'z':_,\, adopted in the spectral analysis varies with the

Peclet number, in order to ensure numerical accuracy: we considerIt is worth pointing out, that eigenfunction localization represents
N=100 for low Peclet values Pe=201C, up to N=1600 for Pe  an empirical finding, while the rest of the analysis, namely the
=1CP. The eigenfunctions depicted in Fig. 3 are normalized to unituniversal scaling, derives from it, and from the functional relations
L® norm. Egs.(2.16) and(2.19.
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and a single local minimum a¢,. By the properties o¥/(x) since fore — 0 the integration limits approactrs: Eq. (3.4)
it follows thatx,,=1-x/, and V(X)) ==V(Xy,). implies that

Let us indicate withVe(x) the periodicization of a ge-
neric potentialV(x) over the real line. Since the spectral - ugr(e) ZCZL, (3.5
properties are invariant under translations of the potential, B4(e)

i.e., the 0perat0r94q and ;lq associated With/(X) andV(x? where C=[*_|D(&)|2 d&/ [*,|g(&)|? d¢ is a positive con-
=V(x-a) wherea is a real number, possess identical eigen-stant. We may use E@2.19) to get an alternative expression
valueT spectra, instead of the p~otenN€(k), we may glways for ug(s). By enforcing Eq(3.3) with V(x) replaced byv(x),
consider the translated potentMi{x) =Ve(X—Xy). This ob-  and making the same approximations applied above for the
servation is made exclusively in order to simplify the nota-integrals Eq.(3.4), as it regards the integration limits, one
tion by translating the critical point at the origin, so that the obtains
expression for the series expansion of the potential near the . .
critical point attain a simpler form. f C =
~ & dé=i V(B(e))g(é)dé. 3.6
The potentiaV(x) possesses the maximumxatO. Let us we) —o 9(&)de —oo (BleDa(&)de 39

expandsV(x) near its local maximum ) . .
Owing to the fact thatg(¢) is localized aroundé=0, the

Ty =\ y y integral at the r.h.s. of Eq3.6) depends on the local behav-
V09 = Vi = VilX|7+ o(x?), B2 or of V(B(e)&) near£=0. Therefore we can apply the local
where y is the nonlinearity exponent characterizing the be-expansion Eq(3.2), thus obtaining a linear system for the
havior of the potential near the critical point. In the case oftwo unknownsug(e) and w(s),
the sine-flow potentialy=2, since this potential possesses a
quadratic nonlinearity in the neighborhood of the critical {AO,R ‘AO,IMMR(«?)} _ |:_VMAO,I +V,87(e)Aq
point. Throughout this section, we keep using the notation Aoy Aor L o(e) VnAor— V1B (e)Arr |
Ay to indicate the~ operator E(q2.9) associated with the (3.7
translated potentiaV.

Let u(e) and ¢,(x) be the dominant eigenvalue and the Where

associated eigenfunction for the operatgyfor a values of % m
the parameter. Let us further assume the validity of(Bd), Aoy = f g(Odé, AL = f |€79(6)dé, k=R
ie., ' —» ' o
_ 3.8
1,00 = A eopier (3.3 38

and = +i . The solution of the linear system
Before developing further the analysis it is important to point(3.7)gi(§) 9R(O+1ai(8) Y

out that Eq.(3.3) does not imply any assumption on the
functional form of B(e), other that it decays to zero as

Vi(AgjALr ~ AorAL)

-0 - ug(e) = BY(e) 2 2 ) (3.9
: o _ . Aort A,
By substituting Eq(3.3) into Eqg.(2.16), and performing
the change of variablé=x/B(¢), it follows that
V A+ Ay A
w0(e) =iy - (&) 1(AoRrALR+ Aoy 1,|). (3.10

Aé,R + Aé,l
Let us first consider the scaling behavior of the eigenvalues
with e. By equating Eqs(3.5) and(3.9) it follows that

1/2B(e)
| praerae

_ & -1/28(¢)
o e f - 9(9)[? d¢ |
~1/28(e) B(e) = BeY24*Y) = Bg7, (3.11

(3.9

whereD.g(§)=dg(¢§)/d¢. Since the functiorg(é) is vanish-  whereB is a positive constant, and therefore from [E85)
ingly small outside a narrow interval centered&tO, and one obtains
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FIG. 7. Real part of the dominant eigenvalueszvs Pe for the
operators4 in the presence of the ASF potential. Open cir¢les
g=1, dominant eigenvalu¢/\) g=1 second dominant eigenvalue,
(®) g=2 dominant eigenvalue. Ling®) and (b) are the scaling
—up~Pe12 line (c) ~ur~Pe” as predicted by Eq$3.12 and
(3.13.

- ur(e) ~e*~ Pe*, (3.12

where the exponernt is given by
a=——. (3.13

2q+y

Equation (3.13 is the main result regarding universality,
since it expresses the scaling behavior of the dominant e

genvalue as a function of the local behavior near the critical

point, and of the order@of the differential operatos,. In
a similar way, Eq.(3.10 indicates that the imaginary part
w(e) behaves foe — 0 as

[Vu — w(e)| ~ e~ Pe?,

(3.19

i.e., it approache¥), following a scaling law analogous to
that one characterizing the real part.

Equations(3.12) and (3.13 predict that forqg=1 and y
=2 (quadratic potential near the critical pointhe real part
of the dominant eigenvalue follows the scalingug

~Pe 2 which corresponds to the convection-enhanced re-

gime. Conversely, for the fourth-order operatdy with g
=2, and withV(x) quadratic near the critical point, Egs.
(3.12 and (3.13 yield —ug~Pe 3. The comparison with
the spectral results is depicted in Fig. 7, @prl, 2, revealing

PHYSICAL REVIEW E 70, 046224(2004)

1 3
a
[ B
Q Q
8 0 3 0
> >
1 ‘ 3
0 0.5 1 0 0.5 1
() X (b} X

FIG. 8. (a) PotentialV(x) given by Eq.(3.16). Line (a) refers to
h=1/4, line (b) to h=0.1. (b) Multimaxima potential V(x)
=27[sin(27x)+0.5 sin8mx)].

Equations(3.11)«3.14) are the core of auniversality
theoryfor the spectral properties in homogenization dynam-
ics (restricted to two-dimensional autonomous flpwshis
theory is grounded on the properties of three scaling expo-
nents: the exponeny associated with the scaling of the
boundary-layer widthB(e) Eqg. (3.11), the exponent char-
acterizing the decay of the real part of the dominant eigen-
value Eg.(3.12, and the exponenf which refers to the
relaxation properties of the imaginary part towafg, [Vy
-w(e)|~ &%, EQ. (3.14. The relations between these three

I@xponents are

a=ymn,
(3.1

K=«o.

In order to assess further the validity of E®.12), let us
consider a family of trapezoidal potentidlsee Fig. 8)]:
4

2mxih, x e 0],
2w, xe]h1/2-h],
V(x)=§ m(1-2x)/h, xe]1/2-h,1/2 +h],
-2m, xell1/2+h,1-h],
\27r(x— 1/h, xe]l-h,1],

(3.16

whereh € [0,1/4]. The potentials Eqg(3.16) are continuous
for any he]0,1/4]. For h=1/4, Eq.(3.16 yields a tent

the perfect agreement betwegn theory a_nd sim_ulations. Theotential and therefore=1. Forh—0, V(x) approaches a
power-law Eq(3.12) characterizes the entire family of com- giscontinuous square-wave potential. In the “pathological”

plex conjugate eigenvalugsorresponding to the two arms
of the fork depicted in Fig. 2 This is shown in Fig. 1see
lines (a) and (b)] for the first and second dominant eigen-
value.

It is important to observe that EqR.11)—3.14) express a

case of a potentialM(x) which possesses maxima and
minima, in the neighborhood of whicti(x) is constaniflat

critical pointg, the valuey=« can be assigned to these criti-
cal points, sincey=« can be viewed as the limit value for
the exponents,, n=1,2,...associated with an analytic se-

universality principle in the scaling of the spectral propertiesquences of potential,(x) converging toV(x).

with ¢ (or Pe, for e — 0, since the scaling exponeriis and
n) are not influenced by the fine details of the potenti
depend exclusively on the behavior near the critical
(expressed by the exponent.

Therefore, for intermediate values b 1/4, Eq.(3.16

aé’ _b“R/iems a trapezoidal symmetric potential, which is flat near
OINtihe critical point, thusy=x. Equation(3.13 predicts the

valuea=1/3 forh=1/4,9=1, while for any other value di
within the interval[0,1/4, «=1, i.e., the dominant eigen-

3n this exclusive meaning, these equations can be viewed agalue scales “diffusively.” Figure 9 depicts the behavior of
“analogous” to the Feigenbaum universality characterizing the-ug VS Pe for the operatal, driven by the potential Eqg.

period-doubling bifurcation for unimodal maps on the interval.

04622

(3.16. For h=1/4 [line (a)] the scaling g~ Pe 2 is ob-
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10t sess local maxima/minima and is a smooth monotonic func-
tion of x in the open interval0, 1). Such a potential is mani-

b S festly discontinuous ax=0 (and x=1, since by periodicity
these two endpoints coincigeé\ prototypical model for these
class of flows is given by, (x)=x-1/2. By enforcing the
empirical observation that each eigenfunction is localized on
a single side of the discontinuityot shown for the sake of
brevity), and applying the same approach based on Egs.
(3.3«3.6), it readily follows that for monotonic discontinu-
ous potentials possessing a linear behavior in the neighbor-
hood of the discontinuity, the exponetis given by

FIG. 9. Real part of the dominant eigenvalueszvs Pe for the a= L .
operator.A; driven by the potential Eq3.16). Open circles(O) 2q+1
refer to the tent potentidi=1/4, solid line (a) to the scaling g
~Pel3 as predicted by Eqg3.12 and (3.13 with y=1. Filled

-5 R L
10
10° 10? 10°
Pe

(3.17

Equation(3.17) implies that monotonic discontinuous poten-
dots (@) to the square-wave potentidl=0, solid line (b) to the ]Ela}:s _po;sr?essmg a “.near tlj.?ha\lnor Cl?fﬁ tct) thte dltSC?.mIIr:jl‘."ty
scaling -ug~Pe! as predicted by the theoretical scaling with alls in thé same universality class of the tent potential dis-

=, Lines(C)(e) refer to the potential Eq3.16 for h=0.05, 0.10, cussed above, as can be intuitively argueq from physic'al rea-
and 0.2, respectively. sons. In the particular case gE1 (Laplacian operator it
follows thata=1/3.

served, while foh— o0, corresponding to a square-wave dis-

continuous potentialline (b)], —ug~ Rél, as predicted by D. Eigenvalue multiplicity and symmetries
Eq.(3.13 for y— . The behavior for intermediate values of ) ) ) o
h is particularly interesting. Wheh is small[h=0.05, line This section addresses eigenvalue multiplicity and how

(c) in Fig. 9, the scaling of the real part of the dominant this i_s related to the symm_etries of the potential. Let us first
eigenvalue follows a power-law decay with an exponent pon5|der the simple potential pelongmg to the class analyzed
=1. Ash increases furthefh=0.1, line(d) andh=0.2, line N Sec. lllC. We have mentioned that jf is a complex
()], a crossover in the s-Pe plot appears. This phenom- €igenvalue ofA, its complex conjugatg is also an eigen-
enon is evident foh=0.2[line (e)], which for Pe< 10° dis- value..Th|s property follows from thg skew symmetry of the
plays a behavior similar to that corresponding to the tenPotentialV(1-x)=-V(x). To prove this property, leg{(x) be
potential [line (a)], while asymptotically(.e., for large P the elgenfur}ctmn associated with and consider the eigen-
follows the diffusive scaling zr~ Pe’L, as predicted by Eq. Vvalue equation fop, (),
(3.13 for y— 0. ; _

Let us consider the spectral results for the imaginary part Dif(x) +iVX)g(X) = uih(X), (3.189
w(e), which are depicted in Fig. 10 fagy=1 andq=2 for ~ where we setD=(-1)4"D? for simplifying the notation.
different potentials: the ASF and the tent potentials. NumeriBy taking the complex conjugate of E(B.18, and making
cal spectral results are in perfect agreement with the theorethe transformationx— 1 -, it follows that
ical scaling Eq.(3.14). _ _ _

To complete the analysis on parallel flows on the torus, let D1 -x) —iVL-X) (1 -x) = up(1-x). (3.19

us consider the case of a velocity field which does not pos- . . ,
By enforcing the skew symmetry of the potential, and defin-

N ' ' ing ¢(x)=¢(1-x), one obtains
10° { : \ ‘ Dp(x) + V(0 $X) = uh(x), (3.20
s b which implies thatu is an eigenvalue 0f, and ¢(x), de-
e 10!} 1 fined above, is the eigenfunction associated with this eigen-
o ¢ value.
102 1 Let us now analyze more complex potentials possessing
a multiple local maxima and minima. The first example is the
3 ‘ symmetric potentiaV/(x) =2 sin(4mx) displaying two local
10 10° 102 10t 105 maxima and two local minima. The spectral plot fdy is
Pe depicted in Fig. 1¢a), and is qualitatively similar to that

characterizing the ASF potentififig. 2(a@)]. There is how-
FIG. 10. 27— vs Pe. Open circleD) and filled dotg®) refer ~ €Vver an important difference: the dominant eigenvalus

to the ASF potential fog=1 andq=2, respectively. Linega) and  twofold symmetric, which implies that there exists four lin-

(b) are the scalings 2-w~Pe“ with a=1/2, a=1/3, respec-  €arly independent eigenfunction associated with eigenvalues

tively. Triangles(A) refer to the tent potential Eq3.16) with h ~ possessing the same real pdor the skew-symmetric prop-

=1/4, andline (c) represents 2-w~ Pe1/3, erties discussed aboyveFigures 12a) and 12b) show the
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FIG. 11. Spectral plots gr-w of Ay for multimaxima poten-
tials. (@) q=1, V(x)=2m sin(4mx). Open circlegO) refer to Pe=2
x 10%, filled dots (@) to Pe=10. (b) q=1, V(X)=2a[sin(2mX)
+0.5 sir(87x)]. Open circles(O) refer to Pe=5< 10?, filled dots

(@) to Pe=10. Labels 1-8 indicate the eightfold branched structure

of the complex conjugate eigenvalues.

imaginary part//(x)=Im[4(x)] of the two degenerate eigen-
functions associated with the dominant eigenvalue.
In the case of more complex potentials, the landscape
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FIG. 13. Modulus|#(x)| of the first two dominant eigenfunc-
tions (a) and (b) of the operator4, in the presence of the multi-
maxima potentialV(x)=2#]sin(27x)+0.5 sir(87x)] for Pe=10.
The dotted lines in both panels represent the poteMia)/2,
drawn in order to highlight the location of its critical points.

branched structure of the complex conjugate eigenvalues,
originated by the presence of eight maxima or minima in the
potential. Figures 1&) and 13b) show the spatial profile of
the eigenfunctions for Pe=4@ssociated with the first two
eigenvalues, the real parts of which are,=0.199 and
-ug=0.202. The eigenfunctions are localized around the
critical points of the potential, and the scaling ofuz (not
shown for the sake of brevityfollows for large Peclet num-
ber the universal scaling Eq8.12 and(3.13) with y=2.

IV. IMPLICATIONS OF UNIVERSALITY
FOR PHYSICALLY REALIZABLE FLOWS

The results obtained in the preceding section for the spec-
tral properties of parallel flows provide a direct physical ex-
planation for the scaling behavior of more complex two-
dimensional autonomous flows. This is a consequence of the

niversality properties characterizing the eigenvalue scaling,

%hat indicates that the exponeamtdepends exclusively on the

which possesses several local maxima/minima of differeneavior of the velocity field near the critical points. It is just

intensity, many symmetries are broken. This is for exampl

the case of the potenti®d(x) depicted in Fig. &), the func-
tional expression of which is

(3.21)

The spectral plot of the operatot; for this potential is de-
picted in Fig. 11b), and is characterized by an eightfold

V(X) = 2a] sin(27x) + 0.5 si(8mx)].

4 4

2 2
) o
< 0 't 0

22 -2

-4 -4

0 025 05 075 1 0 025 05 075 1

(a) X (b) X

$ecause the scaling of the eigenvalues belonging to the

convection-enhanced branch of the spectrum depends on the
local properties of the velocity field that it is possible to
obtain prediction for generic two-dimensional autonomous
flows starting from the spectral information obtained for par-
allel flow models.

The physical reason for this observation stems from the
fact that the qualitative behavior of two-dimensional autono-
mous flows can be locally described by means of a parallel
flow model.

To clarify this concept, let us consider two examples. The
first is a model flow on the two-dimensional tor(i®., on
the unit squaré€? with opposite edge identifigdthe stream
function of which is given by

1-c 1-c
W(xy) =~ Py coq2my) + o cog27x)

+ < sin(27x)sin(27y). 4.1
2

FIG. 12. (a)(b) Imaginary part of the two dominant degenerate

eigenfunctionsy/(x) vs x for the operator4, associated with the
potential V(x) = 24 sin(4mx) for Pe=10.

As an illustration, Fig. 1é) shows the streamline structure
for the case where=1/2. Thevelocity field resulting from
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10 10° 10* 10° 10
(b) Pe (b) Pe

FIG. 14. (@) Contour plot of the stream function E.1). (b) 1
Real part with reversed sigx, of the dominant eigenvalues of the
diffusive (@) and convectivgO) branch as a function of Pe for the
flow on the torus generated by the stream function(&dL). Lines
(@) and (b) represent the scaling laws,~Pe® and \,~ Pe 2,
respectively.

05 ¢

v (y)

the stream function is by definition given by(x)
=(gW/ay,—dV 1 dx)
The second example is the cavity flow in a unit square
cavity 92={(x,y)|0=<x,y=<1} in the creeping flow regime. -0.5 0 0'2 0'4 0I6 0,8 1
! > P ) ) : . .
We use two different symbol€)~ andZ to indicate the unit (©) y
square, since in the latter case, i the opposite edges are
identified, and therefore periodic boundary conditions apply, FIG. 15. (a) Contour plot of the stream function for the cavity
while for the cavity flow, zero-flux conditions must be en- flow on the unit square in creeping flow reginib) Real part with
forced at the boundary of the cavity to express the impermereversed sigr\,, of the dominant eigenvalues of the diffusiv®)
ability condition. The stream functio® for the creeping and convectivgO) branch as a function of Pe for the cavity flow
cavity flow [Fig. 15a)] is the solution of the biharmonic depicted in(a). Lines (a) and (b) represent the scaling laws,
equation,V*¥=0 with zero velocity at all the edges but at ~ P& and\,~Pe 2 respectively(c) vy(y) atx=1/2 for thecav-
y=1, at whichv,=1. In terms of ¥ this implies that the it flow on the unit square.
tangential derivative along the boundary vanishes togethehain recirculation region invading the whole mixing space
with the normal derivative at the static walls, whereasio the cavity flow[see Fig. 16)].
d¥/dn=-1 aty=1 along the moving wall. . ~ Within each recirculation region one can express the
The solution of the advection-diffusion equation for this advection-diffusion equation in a new coordinate system, in
flow systems has been obtained by applying a Galerkin exyhich one of the coordinates is the stream function itself,
pansion with respect to the eigenbasis of the Laplacian opand the other coordinate is chosen orthogonal {stieam-
erator (see, e.g.[22] for details on the numerical accuracy function-based coordinate systerf one expresses the ADE
and on the truncation order in a stream-function-based orthogonal system, the velocity
Both these flows are characterized by the occurrence ifield possesses solely one nonvanishing compogsmte it
the mixing space of recirculation regions: two recirculationis tangent to the streamlingsanalogously to the simple
regions for the stream function E@t.1) on the torus, delim- model flows considered in this papgrarallel flows. This
ited by a X-shaped separatrigee Fig. 14a)], and a single can be easily visualized for the square cavity flow, since, by
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symmetry, atx=1/2, thecoordinate line orthogonal to the 10°
stream function coincide with the line=1/2 parallel to the .
y axis. Due to the recirculating structure of the velocity field,
the nonvanishing component of the velocity field possesses a
nonmonotonic behavior with the occurrence of a single local
maximum/minimum. This is clearly depicted in the case of
the cavity flow[Fig. 15¢)], which shows,(y) along the axis

of symmetryx=1/2.

By enforcing the universality results obtained for parallel
flows, one may expect that the behavior of the nonvanishing 10 . s
velocity fields near its local extremal point influences the 10 10 10

. . . X (a) Pe
scaling behavior of the dominant eigenvalue of the
convection-enhanced branch as a function of the Peclet num-
ber. Since it is a generic property that smooth functions in a
neighborhood of a local extremal point possesses a quadratic
nonlinearity, it may be argued that for flow possessing a
recirculation region the scaling,~ Pe Y2 will occur for the
convection enhanced bran@part from a set of flow of zero
measurg This prediction is confirmed by direct numerical
simulations of the advection-diffusion equations depicted in
Figs. 14 and 1&), which show the dominant eigenvalues of
the two branches of the two flow system described above: 05 0.‘75 |
the diffusional branch, for whichn,~Pe?, and the (b) T
convection-enhanced branch, for whish~ Pe/2, as cor-

rectly predicted by the universality theory in the neighbor- . . .
yp y y y 9 eigenvalue of and convective branch as a function of Pe for the

hood of a quadratic non“n.eamy' . Couette flow(R;=0.5, R,=1). The solid line is\,~ Pe3. (b) Ve-
The same approach discussed above, applies for moye .

. ; .10city v4(r) vsr for the Couette flow.

complex flow structure possessing more than a single recir-

culation region, since the analysis developed is of local ) ) o )
nature. The examples and the discussion developed in this section

It is important to observe that there are physically inter-Show the practical and physical usefulness of the u.ni\_/ersality
esting flow models, which do not possess recirculation retheory developed for parallel flow models for predicting the
gions. For these flows, the velocity component in a streambomogenization/dispersion properties of two-dimensional
function-based coordinate system may be monotonic, and ttHtonomous flows.
flow motion is controlled by the topology of the flow do-
main. A typical example is the two-dimensional creeping
flow between two concentric cylindergwo-dimensional
Couette flow. For the two-dimensional creeping flow be- By considering simple model flows Eq2.2), we have
tween concentric cylinders possessing re@iiiand Ry, in  recast the theoretical analysis of the spectral properties of the
which the outer cylinder is moving with velocit2R,, the  advection-diffusion equation in a simpler problem formally
velocity field in a cylindrical coordinate systefn, ) pos-  analogous to a one-dimensional non-Hermitian Schrédinger
sesses solely a nonvanishing componet), given by equation in the presence of an imaginary potential.

The salient spectral properties of these non-Hermitian op-
erators argi) spectral invarianceji) eigenfunction localiza-
tion, and(iii) universal eigenvalue scaling. The analysis of
the universal scaling leading to Eq8.12 and (3.13 pro-

This velocity field is monotonicsee Fig. 1fb), for R;  vides a theoretical justification of the observed convection-
=1/2,R,=1, Q=1]. The creeping Couette flow is a parallel enhanced behavior occurring in homogenization dynamics in
flow in a cylindrical coordinate system characterized by abounded flows, and represents an example of the relation-
monotonic velocity, and the universality theory developed inships existing between local propertigse exponenty) and

this paper, see E@3.17), predicts the occurrence of the scal- global spectral featurgshe exponenty).

ing \,~ Pe /3, for the convection-enhanced branch. This re- The universality theory developed for parallel flows pro-
sult is confimed by the direct numerical simulation of thevides a theoretical framework for understanding homogeni-
advection-diffusion equation for the creeping flow systemzation properties of more complex flows, as addressed in
depicted in Fig. 16) (these data have been obtained bySec. IV. While the occurrence of a P& scaling is a generic
applying a finite volume algorithm, starting from an initial property characterizing flows possessing recirculation re-
condition, dependent on the angular variablehich excites gions, there are physically relevant examplése creeping

the convection-enhanced branch and possesses vanishiiguette flovy, for which a different scaling~Pe /) is ob-
components on the diffusive branch of the eigenspedgtrum served. The theory explains the occurrence of all these cases.

05

Ve(r)

FIG. 16. (a) Real part with reversed sign, of the dominant

V. CONCLUDING REMARKS

1= (Ry/r)?

vy(r) = Qr—l “(RJRY?

R, <I <Ry. (4.2
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It is remarkable that even the family of operatotgpos-  tinuous but locally nondifferentiable potentials possessing
sesses a rich spectral structure: complex eigenvalue “spectralisplike local maxima. Whether and how the latter observa-
arms” coexist with a real branch, giving rise to the forklike tion can be related to fluid dynamics, is an open problem.
spectral plots depicted in Fig. 2. Moreover, the number of Beyond the relatively straightforward analogy between
complex eigenvalue arms in the absence of specific symméhe advection-diffusion equation, and a class of non-
tries is related to the number of critical poinfiaxima/  Hermitian Schrodinger-type operatdithe family of opera-
minima) of the potential. tors A4 Eq. (2.9), and specifically4,], an intriguing issue is

Equation(3.13 indicates that the “worst” scaling condi- whether and how this analogy could be pushed further, espe-
tion —ur~Pe? is attained in the presence of a potential cially in the presence of more complex velocity fields giving
possessing a flat region, as extensively discussed in connegse to a partially chaotic condition. This is an open question,
tion with the family of potentials Eq(3.16). Conversely, it that could have important conceptual implications in the
may be argued that the “optimal” scaling conditiqey ~ characterization of quantum chaos, and in the analysis of the
~ constant for Pe»c may be achieved by considering con- semiclassical limit of quantum mechanics.
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